18.13 2008-08 Release

Table 18.12 outlines the changes made to the default settings for the 2008-08 release and lists commands to revert the setting to those used by the prior major release group (2007-07). All default settings can be reverted to the prior release by using the command, “Defaults == Pre 2008-08”. For more information on these changes, see the 2008-08 Release Notes.

Table 18.12: Default Changes in the 2008-08 Release and Backward Compatibility to 2007-07
Command Change Description of Change
Uses a new set of defaults for a number of commands. The new defaults produce slightly different results, and very slight differences also occur between the three versions offered. For established models run using the 2007-07-XX builds, use Defaults == PRE 2008-08 to use the default settings used by the 2007-07-XX builds. Testing of a range of models has shown zero change in results if Defaults == PRE 2008-08 switch is set, and the Compaq Fortran compiled version (cSP) is used. Each of the new default settings and their effects are discussed in the rows below.
The method for interpolating n values where the 2D Manning’s n varies with depth has been enhanced from a linear interpolation of the M (1/n) value to a spline interpolation of the n value. See Bed Resistance Depth Interpolation == . Generally has little effect other than when the flow is predominantly in the depth range that the n value is varying. The new approach offers a smoother transition in n values from one depth to the other.
The default viscosity coefficient is now a combination of a 0.2 Smagorinsky and 0.1 constant coefficient, and there are some enhancements to the application of the viscosity term. See Viscosity Coefficient. This has slight effect for the majority of models. For fine grid models (<2m cell size) with low bed resistance and significant variations in velocity vectors the effect is more pronounced but is still slight.
Inertia and viscosity terms are now not transferred across dry cell sides when constructing the coefficients for the solution arrays. This was having the effect of generating a circulation on the other side of the wall (albeit a very weak one), which of course shouldn’t happen! Generally little effect, but can have some minor influence for urban models where buildings and fences are modelled as solid thin Z lines.
1D weir flow has been improved as the water level difference across the weir approaches zero. The new method is more stable. See Weir Flow. Very little difference other than improved stability.
Incorporates minor improvements for transitioning between Regimes A and B, and between inlet and outlet controlled regimes, for circular culverts. Very little difference other than improved stability.
The new automatic selection of cells for 2D SX connections using the 1d_nwk Conn_1D_2D attribute may choose more than one 2D cell. Very little difference other than improved stability at the pit 2D connections.
The default setting for Shallow Depth Stability Factor has changed in the 2008-08-AC release. Set Shallow Depth Stability Factor == 3 for models without direct rainfall to achieve the same results as Builds 2008-08-AA and 2008-08-AB. See Shallow Depth Stability Factor for more information.