Appendix A Vertical Mixing Model Science

A.1 K-Epsilon Model Science

The k-ε turbulence model solves transport equations for the turbulent kinetic energy \(k\) (units: m\(^2\)/s\(^2\)) and the dissipation rate of turbulent kinetic energy \(\varepsilon\) (units: m\(^2\)/s\(^3\)):

\[ \frac{\partial}{\partial t} (\rho k) + \frac{\partial}{\partial x_i} (\rho k u_i) = \frac{\partial}{\partial x_j} \left( \rho \frac{\nu_t}{\sigma_k} \frac{\partial k}{\partial x_j} \right) + P_k + P_b - \rho \varepsilon \]

\[ \frac{\partial}{\partial t} (\rho \varepsilon) + \frac{\partial}{\partial x_i} (\rho \varepsilon u_i) = \frac{\partial}{\partial x_j} \left( \rho \frac{\nu_t}{\sigma_\varepsilon} \frac{\partial \varepsilon}{\partial x_j} \right) + \frac{\varepsilon}{k} \left( C_{1\varepsilon} P_k + C_{3\varepsilon} P_b \right) - C_{2\varepsilon} \rho \frac{\varepsilon^2}{k} \]

where:

  • \(t\) is time (s)
  • \(x_i\) are the coordinates in the three Cartesian directions (m)
  • \(\rho\) is the density of water (kg/m\(^3\))
  • \(u_i\) are the mean velocity components in each Cartesian direction (m/s)
  • \(\nu_t\) is the turbulent (eddy) viscosity (m\(^2\)/s)
  • \(P_k\) and \(P_b\) are the production terms of turbulent kinetic energy
  • \(C_{1\varepsilon}, C_{2\varepsilon}, C_{3\varepsilon}, \sigma_k, \sigma_\varepsilon\) are model coefficients

From \(k\) and \(\varepsilon\), the vertical eddy viscosity \(\nu_t\) is calculated as:

\[ \nu_t = C_\mu \frac{k^2}{\varepsilon} \]

where \(C_\mu\) is a model coefficient (default value: 0.09). The quantity \(\nu_t\) is then used to close the bulk momentum equations.

The production term \(P_k\) is defined as:

\[ P_k = \rho \nu_t S^2 \]

where \(S\) is the magnitude of the mean rate of strain tensor:

\[ S = \sqrt{2 S_{ij} S_{ij}} \]

The production due to buoyancy is estimated as:

\[ P_b = \rho \nu_h N^2 \]

where:

  • \(\nu_h\) is the turbulent eddy diffusivity for heat (m\(^2\)/s), calculated as \(\nu_t / \text{Pr}_t\)
  • \(\text{Pr}_t\) is the turbulent Prandtl number (default = 0.74)
  • \(N^2\) is the Brunt–Väisälä frequency squared (s\(^{-2}\)):

\[ N^2 = -\frac{g}{\rho} \frac{d\rho}{dz} \]

with:

  • \(g\) as the gravitational acceleration (m/s\(^2\))
  • \(z\) as the vertical coordinate (m)

The following default parameters are used based on Rodi (1984):

\[ \sigma_k = 1.0, \quad \sigma_\varepsilon = 1.3, \quad C_{1\varepsilon} = 1.44, \quad C_{2\varepsilon} = 1.92 \]

Different values of \(C_{3\varepsilon}\) can be used depending on the stratification:

\[ C_{3\varepsilon} = \begin{cases} C_{3\varepsilon-} = 0 & \text{for } N^2 < 0 \quad \text{(stable stratification)} \\ C_{3\varepsilon+} = 1 & \text{for } N^2 \geq 0 \quad \text{(unstable stratification)} \end{cases} \]

By defining a negative \(C_{3\varepsilon-}\) value using the Vertical Mixing Model Parameters command, the buoyancy production term \(P_b\) contributes to dissipation of turbulence under stable stratification.

A.2 K-Omega Model Science

The k-ω turbulence model solves two transport equations for:

  • Turbulent kinetic energy \(k\) (units: m\(^2\)/s\(^2\))
  • Rate of the inverse turbulent time scale \(\omega\) (units: s\(^{-1}\))

\[ \frac{\partial}{\partial t} (\rho k) + \frac{\partial}{\partial x_i} (\rho k u_i) = \frac{\partial}{\partial x_j} \left( \rho \frac{\nu_t}{\sigma_k} \frac{\partial k}{\partial x_j} \right) + P_k + P_b - \rho \varepsilon \]

\[ \frac{\partial}{\partial t} (\rho \omega) + \frac{\partial}{\partial x_i} (\rho \omega u_i) = \frac{\partial}{\partial x_j} \left( \rho \frac{\nu_t}{\sigma_\omega} \frac{\partial \omega}{\partial x_j} \right) + \frac{\omega}{k} \left( \alpha P_k + C_{3\omega} P_b \right) - \beta \rho \omega^2 \]

where:

  • \(t\): Time (s)

  • \(x_i\): Cartesian coordinates (m)

  • \(\rho\): Density of water (kg/m\(^3\))

  • \(u_i\): Mean velocity components in each Cartesian direction (m/s)

  • \(\nu_t\): Turbulent eddy viscosity (m\(^2\)/s)

  • \(P_k\), \(P_b\): Production terms of turbulent kinetic energy (see Appendix A.1)

  • \(\alpha\), \(\beta\), \(C_{3\omega}\), \(\sigma_k\), \(\sigma_\omega\): Model coefficients

From \(k\) and \(\omega\), the vertical eddy viscosity \(\nu_t\) is computed as:

\[ \nu_t = \frac{k}{\omega} \]

This quantity \(\nu_t\) is then used to close the bulk momentum equations. The relationship between the dissipation rate \(\varepsilon\) and the inverse turbulent time scale \(\omega\) is given by:

\[ \varepsilon = C_\mu k \omega \]

where \(C_\mu\) is a model coefficient (default = 0.09).

The default values of the model coefficients are taken from Wilcox (1988):

\[ \alpha = \frac{5}{9}, \quad \beta = \frac{3}{40}, \quad \sigma_k = 2, \quad \sigma_\omega = 2 \]

The default values for \(C_{3\omega}\) are zero for both stable and unstable stratification:

\[ C_{3\omega} = \begin{cases} C_{3\omega-} = 0 & \text{for } N^2 < 0 \quad \text{(stable stratification)} \\ C_{3\omega+} = 0 & \text{for } N^2 \geq 0 \quad \text{(unstable stratification)} \end{cases} \]

A negative value for \(C_{3\omega-}\) can be defined using the Vertical Mixing Model Parameters command. This allows the buoyancy production term to act as a sink, dissipating turbulence under stable stratification.

Umlauf and Burchard (2005) summarise the recommended values of \(C_{3\varepsilon}\) and \(C_{3\omega}\) for k-ε and k-ω models as a function of the steady-state Richardson number. These are provided in Table A.2.1.

A.2.1 Table: Model Parameters C3 for k-ε and k-ω Models

Publications Steady-State Richardson Number k-ε Model k-ω Model
C(3ε+) C(3ε−) C(3ω+) C(3ω−)
Gibson and Launder (1978) 0.201.0-0.5960.0-0.623
0.251.0-0.3700.0-0.492
0.301.0-0.2340.0-0.413
Cheng et al. (2002) 0.201.0-1.0640.0-0.894
0.251.0-0.7440.0-0.709
0.301.0-0.5450.0-0.593

A.3 Second Order Model Science

The simplified second-order turbulence closure formulation of Umlauf and Burchard (2005) is:

\[ \nu_t = C_\mu(\alpha_M, \alpha_N) \frac{k}{\varepsilon}, \quad \nu_h = C_\mu'(\alpha_M, \alpha_N) \frac{k}{\varepsilon} \] \[ \alpha_M = \tau^2 S^2, \quad \alpha_N = \tau^2 N^2, \quad \tau = \frac{k}{\varepsilon} \]

The stability functions are written as:

\[ C_\mu(\alpha_M, \alpha_N) = \frac{n_0 + n_1 \alpha_N + n_2 \alpha_M} {d_0 + d_1 \alpha_N + d_2 \alpha_M + d_3 \alpha_N \alpha_M + d_4 \alpha_N^2 + d_5 \alpha_M^2} \]

\[ C_\mu'(\alpha_M, \alpha_N) = \frac{n_{b0} + n_{b1} \alpha_N + n_{b2} \alpha_M} {d_0 + d_1 \alpha_N + d_2 \alpha_M + d_3 \alpha_N \alpha_M + d_4 \alpha_N^2 + d_5 \alpha_M^2} \]

The model parameters \(d_X\) and \(n_X\) are defined as:

\[ \begin{aligned} d_0 &= 36N^3 N_b^2 \\\\ d_1 &= 84a_5 a_{b3} N^2 N_b + 36N^3 N_b \\\\ d_2 &= 9(a_{b2}^2 - a_{b1}^2) N^3 + 12(a_2^2 - 3a_3^2) N N_b^2 \\\\ d_3 &= 12a_5 a_{b3}(a_2 a_{b1} - 3a_3 a_{b2})N + 12a_5 a_{b3}(a_3^2 - a_3^2) N_b + 12a_{b5}(3a_3^2 - a_3^2) N N_b \\\\ d_4 &= 48a_5^2 a_{b3}^2 N + 36a_5 a_{b3} a_{b5} N^2 \\\\ d_5 &= 3(a_2^2 - 3a_3^2)(a_{b1}^2 - a_{b2}^2) N \\\\ n_0 &= 36a_1 N^2 N_b^2 \\\\ n_1 &= -12a_5 a_{b3}(a_{b1} + a_{b2}) N^2 + 8a_5 a_{b3}(6a_1 - a_2 - 3a_3) N N_b + 36a_1 a_{b5} N^2 N_b \\\\ n_2 &= 9a_1(a_{b2}^2 - a_{b1}^2) N^2 \\\\ n_{b0} &= 12a_{b3}^2 N^3 N_b \\\\ n_{b1} &= 12a_5 a_{b3}^2 N^2 \\\\ n_{b2} &= 9a_1 a_{b3}(a_{b1} - a_{b2}) N^2 + [6a_1(a_2 - 3a_3) - 4(a_2^2 - 3a_3^2)] a_{b3} N N_b \end{aligned} \]

The parameters \(N\), \(N_b\), and the coefficients \(a_X\) used in the equations above are defined as:

\[ \begin{aligned} N &= \frac{c_1}{2}, \quad N_b = c_{b1} \\\\ a_1 &= \frac{2}{3} - \frac{1}{2} c_2, \quad a_2 = 1 - \frac{1}{2} c_3, \quad a_3 = 1 - \frac{1}{2} c_4 \\\\ a_4 &= \frac{1}{2} c_5 = 0, \quad a_5 = \frac{1}{2} - \frac{1}{2} c_6 \\\\ a_{b1} &= 1 - c_{b2}, \quad a_{b2} = 1 - c_{b3}, \quad a_{b3} = 2(1 - c_{b4}) \\\\ a_{b4} &= 2(1 - c_{b5}), \quad a_{b5} = 2 c_{bb}(1 - c_{b5}) \end{aligned} \]

The empirical parameters \(a_X\) can be chosen from Table A.3.1.

A.3.1 Table: Empirical Parameters Group in Second-Order Turbulence Model

Parameter GL78 MY86 KC94 LDOR96 CHCD01A CHCD01B CCH02
c13.60006.00006.00003.00005.00005.00005.0000
c20.80000.32000.32000.80000.80000.69830.7983
c31.20000.00000.00002.00001.96801.96641.9680
c41.20000.00000.00001.11801.13601.09401.1360
c50.00000.00000.00000.00000.00000.00000.0000
c60.50000.00000.00000.50000.40000.49500.5000
cb13.00003.72803.72803.00005.95005.60005.5200
cb20.33330.00000.70000.33330.60000.60000.2134
cb30.33330.00000.70000.33331.00001.00000.3570
cb40.00000.00000.00000.00000.00000.00000.0000
cb50.33330.00000.20000.33330.33330.33330.3333
cbb0.80000.61020.61020.80000.72000.47700.8200
PublicationGibson and Launder (1978)Mellor and Yamada (1982)Kantha and Clayson (1994)Luyten et al. (1996)Canuto et al. (2001), version ACanuto et al. (2001), version BCheng et al. (2002)

A.4 References

References are provided in Section 3.6.