pytuflow.XMDF.time_series#
- XMDF.time_series(locations, data_types, time_fmt='relative', averaging_method=None)#
Extracts time-series data for the given locations and data types.
The
locations
can be a single point in the form of a tuple(x, y)
or in the Well Known Text (WKT) format. It can also be a list of points, or a dictionary of points where the key will be used in the column name in the resulting DataFrame.The
locations
argument can also be a single GIS file path e.g. Shapefile or GPKG (but any format supported by GDAL is also supported). GPKG’s should follow the TUFLOW convention if specifying the layer name within the databasedatabase.gpkg >> layer
. If the GIS layer has a field calledname
,label
, orID
then this will be used as the column name in the resulting DataFrame.The returned DataFrame will use a single time index and the column names will be in the form of:
label/data_type
e.g.pnt1/water level
.- Parameters:
locations (Point | list[Point] | dict[str, Point] | PathLike) – The location to extract the time series data for.
data_types (str | list[str]) – The data types to extract the time series data for.
time_fmt (str, optional) – The format for the time values. Options are ‘relative’ or ‘absolute’.
averaging_method (str, optional) –
The depth-averaging method to use. Only applicable for 3D results. If None is provided for a 3D result, the current rendering method will be used.
The averaging methods are:
singlelevel
multilevel
depth
height
elevation
sigma
The averaging method parameters can be adjusted by building them into the method string in a URI style format. The format is as follows:
<method>?dir=<dir>&<value1>&<value2>
Where
<method>
is the averaging method name<dir>
is the direction,top
orbottom
(i.e. from top or from bottom) - only used by certain averaging methods<value1>
,<value2>
… are the values to be used in the averaging method (the number required to be passed depends on the averaging method)
e.g.
'singlelevel?dir=top&1'
uses the single level averaging method and takes the first vertical layer from the top. Or'sigma&0.1&0.9'
uses the sigma averaging method and averages values located between the 10th and 90th water column depth.
- Returns:
The time series data.
- Return type:
pd.DataFrame
Examples
Get the water level time-series data for a given point defined as
(x, y)
:>>> mesh = ... # Assume mesh is a loaded Mesh result >>> mesh.time_series((293250, 6178030), 'water level') time pnt1/water level 0.000000 NaN 0.083333 NaN 0.166667 NaN 0.250000 NaN 0.333333 NaN 0.416667 NaN 0.500000 NaN 0.583333 NaN 0.666667 41.561204 0.750000 41.838923 ... ... 2.666667 41.278006 2.750000 41.239387 2.833334 41.201996 2.916667 41.166462 3.000000 41.128152
Get velocity time-series using all the points within a shapefile:
>>> mesh.time_series('path/to/shapefile.shp', 'vel') time pnt1/velocity 0.000000 NaN 0.083333 NaN 0.166667 NaN 0.250000 NaN 0.333333 NaN 0.416667 NaN 0.500000 NaN 0.583333 NaN 0.666667 0.975577 0.750000 0.914921 ... ... 2.666667 0.320217 2.750000 0.270925 2.833334 0.233793 2.916667 0.206761 3.000000 0.183721