pytuflow.NCGrid.section#
- NCGrid.section(locations, data_types, time, **kwargs)#
Extracts section data for the given locations and data types.
The
locations
can be a list ofx, y
tuple points, or a Well Known Text (WKT) line string. It can also be a dictionary of key, line-string pairs where the key is the name that will be used in the column name in the resulting DataFrame.The
locations
argument can also be a single GIS file path e.g. Shapefile or GPKG (but any format supported by GDAL is also supported). GPKG’s should follow the TUFLOW convention if specifying the layer name within the databasedatabase.gpkg >> layer
. If the GIS layer has a field calledname
,label
, orID
then this will be used as the column name in the resulting DataFrame.The resulting DataFrame will use multi-index columns since the data is not guaranteed to have the same index. The level 1 index will be the label, and the level 2 index will be the data type. The offset will always be the first column within the level 2 index.
- Parameters:
locations (list[Point] | str | PathLike) – The location to extract the section data for.
data_types (str | list[str]) – The data types to extract the section data for.
time (TimeLike) – The time to extract the section data for.
- Returns:
The section data.
- Return type:
pd.DataFrame
Examples
Get a water level section from a line defined in a shapefile at time 0.5 hrs:
>>> grid = ... # Assume grid is a loaded grid result instance >>> grid.section('/path/to/line.shp', 'water level', 0.5) offset water level/Line 1 0 0.000000 45.994362 1 1.495967 45.994362 2 1.495967 45.636654 3 4.159921 45.636654 4 4.159921 45.592628 5 6.804385 45.592628 6 6.804385 45.624744 7 6.823876 45.624744 8 6.823876 45.583813 9 9.487831 45.583813 10 9.487831 45.560959